お電話でもお問い合わせください
03-5860-2441
Report thumbnail
商品コード MM0912123467X3
出版日 2023/11/13
MarketsandMarkets
英文369 ページグローバル

創薬AI市場 - オファリング別、プロセス別、ドラッグデザイン別、ドライ・ラボ別、ウェットラボ別、地域別:グローバル市場予測(〜2028年)

Artificial Intelligence / AI in Drug Discovery Market by Offering, Process (Target selection, Validation, Lead generation, optimization), Drug Design (Small molecule, Vaccine, Antibody, PK/PD), Dry Lab, Wet Lab (Single Cell analysis) & Region - Global Forecast to 2028


Report thumbnail
商品コード MM0912123467X3◆2024年11月版も出版されている時期ですので、お問い合わせ後すぐに確認いたします。
出版日 2023/11/13
MarketsandMarkets
英文 369 ページグローバル

創薬AI市場 - オファリング別、プロセス別、ドラッグデザイン別、ドライ・ラボ別、ウェットラボ別、地域別:グローバル市場予測(〜2028年)

Artificial Intelligence / AI in Drug Discovery Market by Offering, Process (Target selection, Validation, Lead generation, optimization), Drug Design (Small molecule, Vaccine, Antibody, PK/PD), Dry Lab, Wet Lab (Single Cell analysis) & Region - Global Forecast to 2028



全体要約

創薬AI市場は、2023年に9億XX米ドルから2028年には49億XX米ドルに達すると予測されており、予測期間中の年平均成長率(CAGR)は40.2%です。創薬AIは複雑な生物データを分析することで、潜在的な薬のターゲットの特定や検証を迅速化します。特に、機械学習技術は、薬剤候補の挙動を予測するモデルを作成し、成功の可能性が高い化合物を特定することに貢献します。また、2022年には北米が創薬AI市場の最大かつ最も成長している地域であり、製薬企業やバイオテクノロジーの革新者たちがAIの能力を活用しています。

提供内容別に見ると、創薬AI市場はソフトウェアとサービスに分かれますが、2022年にはサービスが最大の市場シェアを保持しました。さらに、利用ケース別では、2022年に小分子設計と最適化が最大のシェアを占めています。市場の主なプレイヤーには、NVIDIA Corporation、Exscientia、BenevolentAI、Recursionなどが含まれ、これらの企業は製品の発表や投資を通じて市場での競争力を高めています。

関連する質問

49億USD (2028年)

40.2% (2023年から2028年)

NVIDIA Corporation, Exscientia, BenevolentAI, Recursion, Insilico Medicine, Schrödinger, Inc., Microsoft Corporation, Google, Atomwise Inc., Illumina, Inc., NuMedii, Inc., XtalPi Inc., Iktos, Tempus Labs, Deep Genomics, Inc., Verge Genomics, BenchSci, Insitro, Valo Health, BPGbio, Inc., IQVIA Inc, Labcorp, Tencent Holdings Limited, Predictive Oncology, Inc., Celsius Therapeutics, CytoReason, Owkin, Inc., Cloud Pharmaceuticals, Evaxion Biotech, Standigm, BIOAGE, Envisagenics, Aria Pharmaceuticals, Inc.

薬剤発見のコストと時間を削減する必要性, 薬の特許切れ, 跨業界のコラボレーションとパートナーシップの増加


概要

人工知能(AI)による創薬市場は、2023年の9億米ドルから2028年には49億米ドルに達すると予測されており、予測期間中の年平均成長率(CAGR)は40.2%です。AIは複雑な生物学的データを分析することで、潜在的な薬物ターゲットの特定と検証を迅速化します。これにより、治療介入のための生物学的に関連するターゲットの選択が加速されます。機械学習などのAI技術は迅速な分析と意思決定を可能にし、創薬プロセスに必要な時間と資源を削減します。この効率性は、急速に変化する製薬業界において競争優位性をもたらします。したがって、上述の要因がこの市場の成長を促進します。一方で、熟練労働者の十分な供給の不足が、予測期間中に市場の成長をある程度制約する主要な要因です。
「サービスセグメントは2022年に主要なシェアを占め、予測期間中に最も高い成長が期待されています。」
提供に基づいて、医薬品発見におけるAI市場はソフトウェアとサービスに二分されます。2022年にはこのセグメントが医薬品発見におけるAIサービス市場の最大の市場シェアを占め、予測期間中に最も速いCAGRで成長すると予想されています。サービスを通じてAI技術と専門知識にアクセスすることで、製薬会社が医薬品発見にAIを導入する際の障壁が減少します。これは、広範な社内AI能力を持たない小規模企業にとって特に有益であり、彼らが大きな初期投資を行うことなくAIの力を活用できるようにします。
「機械学習技術セグメントは、世界のAIによるドラッグディスカバリー市場で最大のシェアを占めました。」
技術に基づいて、医薬品発見市場は機械学習、自然言語処理(NLP)、コンテキスト対応処理、その他の技術に分かれています。機械学習セグメントは2022年に全球市場の中で最大のシェアを占め、予測期間中に最も高いCAGRで成長すると予想されています。機械学習は、人体内での潜在的な医薬品候補の挙動を予測するモデルの作成を可能にします。これにより、成功の可能性が最も高い化合物の特定が支援され、失敗した候補に関連するコストと時間の削減が実現します。機械学習は、患者データを分析して個々の薬に対する反応を予測することで、個別化医療戦略の開発にも貢献します。これにより、遺伝的、分子的、臨床的情報に基づいて治療を調整できるため、より効果的な結果が得られ、医薬品発見プロセスの加速にもつながり、このセグメントの市場成長を支える要因となっています。
「小分子設計と最適化セグメントは、2022年に市場のユースケースセグメントで最大のシェアを占めると予想されています。」
使用ケースに基づいて、医薬品発見市場におけるAIは、小分子設計と最適化、病気の理解、安全性と毒性、ワクチン設計と最適化、抗体およびその他の生物製剤の設計と最適化に分かれています。2022年には、小分子設計と最適化セグメントが医薬品発見市場において最も大きなシェアを占めていました。AIは、小分子設計と最適化において主に二つの目的で活用されています。第一に、既存の化学ライブラリをスクリーニングしたり、生成的なデ・ノボ設計を通じて、ヒット類似化合物やリード類似化合物の特定を支援します。第二に、AIは特定されたヒットを最適化し、結合親和性、毒性、合成などの望ましい特性を確保し、最終的にはより効果的で安全な医薬品候補の開発につながります。これらの要因は、医薬品発見の使用ケースに特化したAIアルゴリズムの開発と洗練に寄与しています。
「北米が2022年の医薬品発見におけるAI市場を支配する」
世界のAIによる医薬品発見市場は、北米、ヨーロッパ、APAC、その他の地域という4つの主要地域に分かれています。2022年、北米はAIによる医薬品発見の地域市場で最も大きく、最も成長の速い地域でした。北米には、多くの製薬大手やバイオテクノロジーの革新者が集まり、AIの医薬品発見における能力を積極的に探求しています。これらの業界リーダーは、AI駆動の研究開発に大規模な投資を行い、市場の成長を促進しています。北米の医薬品とヘルスケアに関する確立された規制フレームワークは、業界の基準やガイドラインに準拠しながら、AI技術の統合を促進しています。これらの要因が、北米におけるAIによる医薬品発見市場を牽引するでしょう。
供給側、需要側、主要インタビューの内訳、企業の種類、職位、地域別:
・会社タイプ別:
供給サイド別:Tier 1 (31%)、Tier 2 (28%)、Tier 3 (41%)
• 需要側によると:購買マネージャー(45%)、人工知能、機械学習、薬物発見、計算分子設計の責任者(30%)、研究科学者(25%)。
• 職種別:Cレベル(31%)、ディレクター級(25%)、その他(44%)
地域別: 北米 (45%), 欧州 (20%), アジア太平洋 (28%), 南米 (4%), 中東 & アフリカ (3%)。
この市場の主要なプレーヤーは、NVIDIA Corporation(米国)、Exscientia(英国)、BenevolentAI(英国)、Recursion(米国)、Insilico Medicine(米国)、Schrödinger, Inc.(米国)、Microsoft Corporation(米国)、Google(米国)、Atomwise Inc.(米国)、Illumina, Inc.(米国)、NuMedii, Inc.(米国)、XtalPi Inc.(米国)、Iktos(フランス)、Tempus Labs(米国)、Deep Genomics, Inc.(カナダ)、Verge Genomics(米国)、BenchSci(カナダ)、Insitro(米国)、Valo Health(米国)、BPGbio, Inc.(米国)、IQVIA Inc(米国)、Labcorp(米国)、Tencent Holdings Limited(中国)、Predictive Oncology, Inc.(米国)、Celsius Therapeutics(米国)、CytoReason(イスラエル)、Owkin, Inc.(米国)、Cloud Pharmaceuticals(米国)、Evaxion Biotech(デンマーク)、Standigm(韓国)、BIOAGE(米国)、Envisagenics(米国)、およびAria Pharmaceuticals, Inc.(米国)です。プレーヤーは、新製品の発表や強化、投資、パートナーシップ、協力、合弁事業、資金調達、買収、拡張、契約、販売契約、及びアライアンスなど、有機的及び無機的な成長戦略を採用して、提供内容を増やし、顧客の未充足なニーズに応え、収益性を高め、グローバル市場での存在感を拡大しています。
リサーチカバレッジ
この報告書は、提供、技術、治療領域、使用例、プロセス、エンドユーザー、および地域に基づいて、薬物発見におけるAI市場を調査しています。
この報告書は、市場成長に影響を与える要因(推進要因、抑制要因、機会、課題など)を分析しています。
このレポートは、利害関係者にとっての市場での機会と課題を評価し、市場のリーダーに対する競争環境の詳細を提供。
この報告書は、医薬品発見におけるAI市場全体への成長動向、展望、貢献に関連してマイクロ市場を調査しています。
レポートでは、5つの主要地域に関する市場セグメントの収益を予測しています。
レポートを購入する理由
この報告書は、確立された企業だけでなく、新規参入企業や小規模企業が市場の動向を把握するのに役立ち、それによってより大きなシェアを獲得する手助けとなります。報告書を購入する企業は、以下に挙げる5つの戦略の1つまたは組み合わせを使用することができます。
このレポートは以下のポイントに関する洞察を提供します:
AIによる医薬品発見市場の成長に影響を与える主要な要因(産業間コラボレーションとパートナーシップの増加、医薬品発見と開発コストの制御ニーズの高まり、いくつかの医薬品の特許満了)、制約(AI労働力の不足および医療ソフトウェアに関するあいまいな規制ガイドライン)、機会(バイオテクノロジー産業の成長、新興市場、人間を意識したAIシステムの開発に焦点を当てること、COVID-19パンデミックにもかかわらず医薬品および生物学的製品市場の成長)、そして課題(データセットの限られた利用可能性)。
製品開発/イノベーション:医薬品発見市場における今後の技術、研究開発活動、製品発売に関する詳細な洞察。
市場の発展:収益性の高い新興市場に関する包括的な情報。レポートでは、地域ごとの医薬品発見ソリューションにおけるさまざまな種類のAI市場を分析しています。
市場の多様化:製品、未開発地域、最近の動向、そして薬剤発見におけるAIに関する投資に関する詳細な情報。
競争評価:AIによる薬剤発見市場における主要プレーヤーの市場シェア、戦略、製品、流通ネットワーク、製造能力の詳細な評価です。

※以下の目次にて、具体的なレポートの構成をご覧頂けます。ご購入、無料サンプルご請求、その他お問い合わせは、ページ上のボタンよりお進みください。

目次

  • 1 イントロダクション 38

    • 1.1 調査の目的 38
    • 1.2 市場の定義 38
      • 1.2.1 包含・除外事項 39
    • 1.3 市場範囲 40
      • 1.3.1 市場セグメンテーション 40
      • 1.3.2 対象地域 41
      • 1.3.3 対象年 41
      • 1.3.4 通貨 42
    • 1.4 ステークホルダー 42
    • 1.5 変化のサマリー 43
      • 1.5.1 リセッション時のインパクト 44
  • 2 調査手法 45

    • 2.1 リサーチデータ 45
    • 2.2 二次情報 46
      • 2.2.1 二次情報の主要データ 47
    • 2.3 一次データ 47
      • 2.3.1 一次情報 48
        • 2.3.1.1 一次情報の主要データ 49
        • 2.3.1.2 業界についての主な考察 50
      • 2.3.2 一次インタビュー内訳 50
    • 2.4 市場規模予測 51
    • 2.5 市場の内訳とデータのトライアンギュレーション 58
    • 2.6 前提 59
      • 2.6.1 マーケットサイジングの前提 59
      • 2.6.2 スタディ全体の前提条件 59
    • 2.7 制約 60
    • 2.8 リスク評価 60
    • 2.9 リセッション時のインパクト分析 61
  • 3 エグゼクティブサマリー 63

  • 4 更なる考察 68

    • 4.1 創薬AI市場におけるプレーヤーの魅力的な機会 68
    • 4.2 創薬AI市場:地域情勢 69
    • 4.3 創薬AI市場:地理的成長機会 69
    • 4.4 北米の創薬AI市場:エンドユーザー・国別、2022年 70
    • 4.5 創薬AI市場:製品別 70
    • 4.6 創薬AI市場:技術別 71
    • 4.7 創薬AI市場:治療分野別 71
    • 4.8 創薬AI市場、プロセス別 72
    • 4.9 創薬AI市場、ユースケース別 72
    • 4.10 創薬AI市場、エンドユーザー別 73
  • 5 市場概要 74

    • 5.1 イントロダクション 74
    • 5.2 市場力学 74
      • 5.2.1 促進要因 75
      • 5.2.2 抑制要因 78
      • 5.2.3 市場機会 79
        • 5.2.3.1 成長するバイオテクノロジー産業 79
        • 5.2.3.2 エマージングマーケット 79
        • 5.2.3.3 人間を意識したAIシステムの開発に注力 80
      • 5.2.4 課題 80
        • 5.2.4.1 利用可能なデータセットが限られている 80
        • 5.2.4.2 必要なツールと使い勝手の欠如 80
  • 6 業界の考察 82

    • 6.1 主要業界動向の概要 82
      • 6.1.1 創薬におけるAIの進化 82
      • 6.1.2 コンピュータ支援ドラッグデザインとAI 84
    • 6.2 サプライチェーン分析 84
    • 6.3 ポーターのファイブフォース分析 85
      • 6.3.1 競合・競争状況の激しさ 85
      • 6.3.2 買い手の交渉力 85
      • 6.3.3 サプライヤーの交渉力 86
      • 6.3.4 代替品の脅威 86
      • 6.3.5 新規参入の脅威 86
    • 6.4 エコシステム/マーケットマップ 86
    • 6.5 技術分析 87
      • 6.5.1 ドライラボ・サービス 87
      • 6.5.2 ウェットラボ・サービス 90
        • 6.5.2.1 ケミストリーサービス 90
        • 6.5.2.2 バイオロジカルサービス 91
          • 6.5.2.2.1 シングルセル解析 92
    • 6.6 価格分析 95
      • 6.6.1 平均販売価格トレンド、地域別 95
      • 6.6.2 指標価格分析(プロセス別 96
    • 6.7 ビジネスモデル 96
    • 6.8 ケーススタディ分析 99
      • 6.8.1 ケーススタディ1:ブリストル・マイヤーズ スクイブ社とエクセンティア社 99
      • 6.8.2 ケーススタディ2:Apeiron LLCとExscientia 100
    • 6.9 規制分析 101
      • 6.9.1 創薬AI市場:地域別の規制状況 101
      • 6.9.2 規制当局、政府機関、その他組織 103
    • 6.10 特許分析 104
    • 6.11 主要会議・イベント(2023年第1四半期~2024年第2四半期) 108
    • 6.12 顧客事業にインパクトのあるトレンド/ディスラプション 109
    • 6.13 主なステークホルダーと購入基準 109
      • 6.13.1 購買プロセスにおける主要ステークホルダー 109
      • 6.13.2 創薬AI市場の購入基準 110
    • 6.14 Ai由来の臨床資産 110
    • 6.15 アンメットニーズ 120
  • 7 創薬AIの市場、オファリング別 123

    • 7.1 イントロダクション 124
    • 7.2 サービス 124
      • 7.2.1 サービス部門が最大の成長を遂げる 124
    • 7.3 ソフトウェア 125
  • 8 創薬AIの市場、技術別 127

    • 8.1 イントロダクション 128
    • 8.2 機械学習 128
      • 8.2.1 ディープラーニング 130
        • 8.2.1.1 ディープラーニング、創薬への導入が進む 130
      • 8.2.2 教師あり学習 131
        • 8.2.2.1 医薬品リポジショニングへの応用が市場を牽引 131
      • 8.2.3 強化学習 132
      • 8.2.4 教師なし学習 133
        • 8.2.4.1 エンドユーザーの採用に影響を与える予測不可能性 133
      • 8.2.5 その他の機械学習技術 134
    • 8.3 自然言語処理 135
      • 8.3.1 成長を支えるデータ識別の可能性 135
    • 8.4 コンテキスト認識処理とコンテキスト認識コンピューティング 136
      • 8.4.1 処理能力の向上、コネクティビティの向上が利用を後押し 136
    • 8.5 その他の技術 137
  • 9 創薬AI市場

    • 9.1 イントロダクション 140
    • 9.2 オンコロジー 140
    • 9.3 感染症 141
      • 9.3.1 疫病の発生がドラッグディスカバリーを後押し 141
    • 9.4 神経学 143
      • 9.4.1 市場を牽引する研究開発の強化が必要 143
    • 9.5 循環器系疾患 144
      • 9.5.1 CVD治療薬の需要増加が同分野を牽引 144
    • 9.6 免疫学 145
      • 9.6.1 免疫疾患の治療薬パイプラインが増加し、市場成長を後押し 145
    • 9.7 代謝性疾患 146
      • 9.7.1 低分子治療薬の発見におけるAIの役割が採用を促進 146
    • 9.8 その他治療エリア 148
  • 10 創薬AI市場、プロセス別 149

    • 10.1 イントロダクション 150
    • 10.2 ターゲットの特定と選択 151
      • 10.2.1 市場成長を支える新技術の開発 151
    • 10.3 ターゲットバリデーション 152
      • 10.3.1 後期段階での失敗を避けるため、ターゲット検証の重要性が高まっている 152
    • 10.4 ヒットの特定と優先順位付け 154
      • 10.4.1 採用を推進するための大規模データ分析の必要性 154
    • 10.5 ヒット・トゥ・リードの同定/リードの生成 155
      • 10.5.1 Hit-to-Lead Identificationが最大のマーケットシェアを占める 155
    • 10.6 リードの最適化 156
    • 10.7 候補者の選定と検証 158
  • 11 創薬AI市場、ユースケース別 160

    • 11.1 イントロダクション 161
    • 11.2 低分子設計と最適化 162
      • 11.2.1 十分に検証されたAIツールの利用が市場成長を後押し 162
    • 11.3 病気の理解 164
    • 11.4 安全性と毒性 165
    • 11.5 ワクチンデザインと最適化 167
    • 11.6 抗体およびその他の生物学的製剤の設計と最適化 169
  • 12 創薬AIの市場、エンドユーザー別 171

    • 12.1 イントロダクション 172
    • 12.2 製薬会社・バイオテクノロジー企業 172
    • 12.3 受託研究機関 175
    • 12.4 研究センター、学術・政府機関 177
      • 12.4.1 予測期間中に最も高いCAGRを記録するセグメント 177
  • 13 創薬AIの市場、地域別 179

    • 13.1 イントロダクション 180
    • 13.2 北米 180
      • 13.2.1 北米:リセッション時のインパクト 180
      • 13.2.2 米国 185
      • 13.2.3 カナダ 190
      • 13.2.4 メキシコ 194
        • 13.2.4.1 市場の成長を支える政府の取り組み 194
    • 13.3 ヨーロッパ 197
      • 13.3.1 ヨーロッパ:リセッション時のインパクト 198
      • 13.3.2 英国 202
        • 13.3.2.1 英国が欧州で最大のシェアを占める 202
      • 13.3.3 ドイツ 207
        • 13.3.3.1 政府の支援と有利な研修制度が市場成長を促進 207
      • 13.3.4 フランス 211
      • 13.3.5 イタリア 214
        • 13.3.5.1 市場の成長を支える強力な製薬業界 214
      • 13.3.6 その他ヨーロッパ 218
    • 13.4 アジア太平洋 222
      • 13.4.1 アジア太平洋:リセッション時のインパクト 222
      • 13.4.2 日本 226
        • 13.4.2.1 日本がAPAC市場を支配 226
      • 13.4.3 中国 230
        • 13.4.3.1 成長するCMO市場と異業種コラボレーションが市場を牽引 230
      • 13.4.4 インド 234
        • 13.4.4.1 市場成長を支えるAI技術の着実な採用 234
      • 13.4.5 その他アジア太平洋 238
    • 13.5 南米 242
    • 13.6 中東・アフリカ 246
  • 14 競合情勢 251

    • 14.1 主要企業の成功戦略 251
    • 14.2 収益分析 256
    • 14.3 市場シェア分析 257
    • 14.4 企業評価マトリックス 260
      • 14.4.1 STARS 260
      • 14.4.2 EMERGING LEADERS 260
      • 14.4.3 PERVASIVE PLAYERS 260
      • 14.4.4 PARTICIPANTS 261
      • 14.4.5 企業フットプリント 262
    • 14.5 スタートアップ/中小企業評価マトリックス 266
      • 14.5.1 PROGRESSIVE COMPANIES 266
      • 14.5.2 RESPONSIVE COMPANIES 266
      • 14.5.3 DYNAMIC COMPANIES 266
      • 14.5.4 STARTING BLOCKS 266
      • 14.5.5 AI IN DRUG DISCOVERY MARKET: COMPETITIVE BENCHMARKING 268
    • 14.6 競合他社のシナリオと動向 271
      • 14.6.1 製品ローンチ・改良 271
      • 14.6.2 ディール 273
      • 14.6.3 その他の展開 274
  • 15 企業プロファイル 276

    • 15.1 主要企業 276
      • 15.1.1 NVIDIA CORPORATION 276
      • 15.1.2 EXSCIENTIA 284
      • 15.1.3 GOOGLE 294
      • 15.1.4 BENEVOLENTAI 299
      • 15.1.5 RECURSION 303
      • 15.1.6 INSILICO MEDICINE 307
      • 15.1.7 SCHRÖDINGER, INC 314
      • 15.1.8 MICROSOFT CORPORATION 319
      • 15.1.9 ATOMWISE INC 323
      • 15.1.10 ILLUMINA, INC 325
      • 15.1.11 NUMEDII, INC 330
      • 15.1.12 XTALPI INC 332
      • 15.1.13 IKTOS 335
      • 15.1.14 TEMPUS LABS 341
      • 15.1.15 DEEP GENOMICS, INC 345
      • 15.1.16 VERGE GENOMICS 347
      • 15.1.17 BENCHSCI 349
      • 15.1.18 INSITRO 351
      • 15.1.19 VALO HEALTH 353
      • 15.1.20 BPGBIO, INC 356
    • 15.2 OTHER EMERGING PLAYERS 358
      • 15.2.1 プレディクティブ・オンコロジー社 358
      • 15.2.2 ラボコープ 359
      • 15.2.3 IQVIA社 360
      • 15.2.4 テンセント・ホールディングス・リミテッド 361
      • 15.2.5 セルシウス・セラピューティクス 362
      • 15.2.6 サイトシーズン 363
      • 15.2.7 株式会社オウキン 364
      • 15.2.8 クラウド医薬品 364
      • 15.2.9 エバクシオン・バイオテック 365
      • 15.2.10 スタンディグム 365
      • 15.2.11 バイオエイジ・ラボ 366
      • 15.2.12 エンビサジェニックス 366
      • 15.2.13 アリア・ファーマシューティカルズ 367
  • 16 付録 368

    • 16.1 ディスカッションガイド 368
    • 16.2 ナレッジストア 375
    • 16.3 カスタマイズオプション 377
    • 16.4 関連レポート 378
    • 16.5 執筆者の詳細 379
  • 2023 VS.2028(百万米ドル) 65

※英文のレポートについての日本語表記のタイトルや紹介文などは、すべて生成AIや自動翻訳ソフトを使用して提供しております。それらはお客様の便宜のために提供するものであり、当社はその内容について責任を負いかねますので、何卒ご了承ください。適宜英語の原文をご参照ください。
“All Japanese titles, abstracts, and other descriptions of English-language reports were created using generative AI and/or machine translation. These are provided for your convenience only and may contain errors and inaccuracies. Please be sure to refer to the original English-language text. We disclaim all liability in relation to your reliance on such AI-generated and/or machine-translated content.”


Description

The artificial intelligence (AI) in drug discovery market is projected to reach USD 4.9 billion by 2028 from USD 0.9 billion in 2023, at a CAGR of 40.2% during the forecast period. AI expedites the identification and validation of potential drug targets by analyzing intricate biological data. This accelerates the selection of biologically relevant targets for therapeutic interventions. AI techniques such as machine learning enable rapid analysis and decision-making, reducing the time and resources required for drug discovery processes. This efficiency gains a competitive edge in the fast-paced pharmaceutical landscape. Therefore, aforementioned factors will drive the growth of this market. On the other hand, the inadequate availability of skilled labor is key factor restraining the market growth to a certain extent over the forecast period. “Services segment is estimated to hold the major share in 2022 and also expected to grow at the highest over the forecast period.” Based on offering, the AI in drug discovery market is bifurcated into software and services. The2022 and segment expected to account for the largest market share of the global AI in drug discovery services market in 2022 and expected to grow fastest CAGR during the forecast period. Access to AI technology and expertise through services reduces the barriers for pharmaceutical companies to adopt AI in drug discovery. This is particularly beneficial for smaller companies without extensive in-house AI capabilities, enabling them to harness the power of AI without significant upfront investments. “Machine learning technology segment accounted for the largest share of the global AI in drug discovery market.” Based on technology, the AI in drug discovery market is segmented into machine learning, natural language processing (NLP), context aware processing, and other technologies. The machine learning segment accounted for the largest share of the global market in 2022 and expected to grow at the highest CAGR during the forecast period. Machine learning enables the creation of predictive models that anticipate the behavior of potential drug candidates within the human body. This aids in identifying compounds with the highest likelihood of success, reducing the costs and time associated with unsuccessful candidates. Machine learning contributes to the development of personalized treatment strategies by analyzing patient data to predict individual responses to drugs. This facilitates tailoring treatments based on genetic, molecular, and clinical information, leading to more effective outcomes, which helps accelerate the drug discovery process are some of the factors supporting the market growth of this segment. “Small Molecule Design and Optimization segment expected to hold the largest share of use case segment of the market in 2022.” Based on use cases, the AI in drug discovery market is divided into small molecule design and optimization, understanding disease, safety and toxicity, vaccine design and optimization, antibody and other biologics design and optimization. In 2022, the small molecule design and optimization segment accounted for the largest share of the AI in drug discovery market. AI is employed in small molecule design and optimization for two main purposes. Firstly, it aids in identifying hit-like or lead-like compounds by screening existing chemical libraries or through generative de novo design. Secondly, AI optimizes the identified hits, ensuring favorable properties like binding affinity, toxicity, and synthesis, ultimately leading to the development of more effective and safer drug candidates. These factors contribute to the development and refinement of AI algorithms tailored for drug discovery use cases. “North America to dominate the AI in drug discovery market in 2022” The global AI in the drug discovery market is segmented into four major regions, namely, North America, Europe, APAC, and the Rest of the World. In 2022, North America accounted for the largest and the fastest-growing regional market for AI in drug discovery. North America hosts numerous pharmaceutical giants and biotechnology innovators that are actively exploring AI's capabilities in drug discovery. These industry leaders are investing significantly in AI-driven research and development, driving market growth. North America's well-established regulatory framework for pharmaceuticals and healthcare facilitates the integration of AI technologies while ensuring compliance with industry standards and guidelines. The above-mentioned factors will drive the market of AI in drug discovery in North America. Breakdown of supply-side, demand side, primary interviews, by company type, designation, and region: • By Company Type: • By Supply Side: Tier 1 (31%), Tier 2 (28%), and Tier 3 (41%) • By Demand Side: Purchase Managers (45%), Head of Artificial Intelligence, Machine Learning, Drug Discovery, and Computational Molecular Design (30%) and Research Scientists (25%). • By Designation: C-level (31%), Director-level (25%), and Others (44%) • By Region: North America (45%), Europe (20%), Asia Pacific (28%), South America (4%) and Middle East & Africa (3%). The prominent players in this market are NVIDIA Corporation (US), Exscientia (UK), BenevolentAI (UK), Recursion (US), Insilico Medicine (US), Schrödinger, Inc. (US), Microsoft Corporation (US), Google (US), Atomwise Inc. (US), Illumina, Inc. (US), NuMedii, Inc. (US), XtalPi Inc. (US), Iktos (France), Tempus Labs (US), Deep Genomics, Inc. (Canada), Verge Genomics (US), BenchSci (Canada), Insitro (US), Valo Health (US), BPGbio, Inc. (US), IQVIA Inc (US), Labcorp (US), Tencent Holdings Limited (China), Predictive Oncology, Inc. (US), Celsius Therapeutics (US), CytoReason (Israel), Owkin, Inc. (US), Cloud Pharmaceuticals (US), Evaxion Biotech (Denmark), Standigm (South Korea), BIOAGE (US), Envisagenics (US), and Aria Pharmaceuticals, Inc. (US). Players adopted organic as well as inorganic growth strategies such as product launches and enhancements, and investments, partnerships, collaborations, joint ventures, funding, acquisition, expansions, agreements, sales contracts, and alliances to increase their offerings, cater to the unmet needs of customers, increase their profitability, and expand their presence in the global market. Research Coverage • The report studies the AI in drug discovery market based on offering, technology, therapeutic area, use case, process, end user, and region. • The report analyzes factors (such as drivers, restraints, opportunities, and challenges) affecting the market growth. • The report evaluates the opportunities and challenges in the market for stakeholders and provides details of the competitive landscape for market leaders. • The report studies micro-markets with respect to their growth trends, prospects, and contributions to the total AI in drug discovery market. • The report forecasts the revenue of market segments with respect to five major regions. Reasons to Buy the Report The report can help established firms as well as new entrants/smaller firms to gauge the pulse of the market, which, in turn, would help them garner a greater share. Firms purchasing the report could use one or a combination of the below-mentioned five strategies. This report provides insights into the following pointers:  Analysis of key drivers (growing number of cross-industry collaborations and partnerships, growing need to control drug discovery & development costs and reduce time involved in drug development, patent expiry of several drugs), restraints (shortage of AI workforce and ambiguous regulatory guidelines for medical software), opportunities (growing biotechnology industry, emerging markets, focus on developing human-aware AI systems, growth in the drugs and biologics market despite the COVID-19 pandemic), and challenges (limited availability of data sets) influencing the growth of AI in drug discovery market.  Product Development/Innovation: Detailed insights on upcoming technologies, research and development activities, and product launches in the AI in drug discovery market.  Market Development: Comprehensive information about lucrative emerging markets. The report analyzes the markets for various types of AI in drug discovery solutions across regions.  Market Diversification: Exhaustive information about products, untapped regions, recent developments, and investments in the AI in drug discovery market.  Competitive Assessment: In-depth assessment of market shares, strategies, products, distribution networks, and manufacturing capabilities of the leading players in the AI in drug discovery market.

Table of Contents

  • 1 INTRODUCTION 38

    • 1.1 STUDY OBJECTIVES 38
    • 1.2 MARKET DEFINITION 38
      • 1.2.1 INCLUSIONS AND EXCLUSIONS 39
    • 1.3 MARKET SCOPE 40
      • 1.3.1 MARKET SEGMENTATION 40
      • 1.3.2 REGIONAL SCOPE 41
      • 1.3.3 YEARS CONSIDERED 41
      • 1.3.4 CURRENCY CONSIDERED 42
    • 1.4 STAKEHOLDERS 42
    • 1.5 SUMMARY OF CHANGES 43
      • 1.5.1 RECESSION IMPACT 44
  • 2 RESEARCH METHODOLOGY 45

    • 2.1 RESEARCH DATA 45
    • 2.2 SECONDARY SOURCES 46
      • 2.2.1 KEY DATA FROM SECONDARY SOURCES 47
    • 2.3 PRIMARY DATA 47
      • 2.3.1 PRIMARY SOURCES 48
        • 2.3.1.1 Key data from primary sources 49
        • 2.3.1.2 Key industry insights 50
      • 2.3.2 BREAKDOWN OF PRIMARY INTERVIEWS 50
    • 2.4 MARKET SIZE ESTIMATION 51
    • 2.5 MARKET BREAKDOWN AND DATA TRIANGULATION 58
    • 2.6 ASSUMPTIONS 59
      • 2.6.1 MARKET SIZING ASSUMPTIONS 59
      • 2.6.2 OVERALL STUDY ASSUMPTIONS 59
    • 2.7 LIMITATIONS 60
    • 2.8 RISK ASSESSMENT 60
    • 2.9 RECESSION IMPACT ANALYSIS 61
  • 3 EXECUTIVE SUMMARY 63

  • 4 PREMIUM INSIGHTS 68

    • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN AI IN DRUG DISCOVERY MARKET 68
    • 4.2 AI IN DRUG DISCOVERY MARKET: REGIONAL LANDSCAPE 69
    • 4.3 AI IN DRUG DISCOVERY MARKET: GEOGRAPHIC GROWTH OPPORTUNITIES 69
    • 4.4 NORTH AMERICAN AI IN DRUG DISCOVERY MARKET, BY END USER & COUNTRY, 2022 70
    • 4.5 AI IN DRUG DISCOVERY MARKET, BY OFFERING 70
    • 4.6 AI IN DRUG DISCOVERY MARKET, BY TECHNOLOGY 71
    • 4.7 AI IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA 71
    • 4.8 AI IN DRUG DISCOVERY MARKET, BY PROCESS 72
    • 4.9 AI IN DRUG DISCOVERY MARKET, BY USE CASE 72
    • 4.10 AI IN DRUG DISCOVERY MARKET, BY END USER 73
  • 5 MARKET OVERVIEW 74

    • 5.1 INTRODUCTION 74
    • 5.2 MARKET DYNAMICS 74
      • 5.2.1 DRIVERS 75
        • 5.2.1.1 Growing cross-industry collaborations and partnerships 75
        • 5.2.1.2 Growing need to reduce time and cost of drug discovery and development 77
        • 5.2.1.3 Patent expiry of several drugs 77
      • 5.2.2 RESTRAINTS 78
        • 5.2.2.1 Shortage of AI workforce and ambiguous regulatory guidelines for medical software 78
      • 5.2.3 OPPORTUNITIES 79
        • 5.2.3.1 Growing biotechnology industry 79
        • 5.2.3.2 Emerging markets 79
        • 5.2.3.3 Focus on developing human-aware AI systems 80
      • 5.2.4 CHALLENGES 80
        • 5.2.4.1 Limited availability of data sets 80
        • 5.2.4.2 Lack of required tools and usability 80
  • 6 INDUSTRY INSIGHTS 82

    • 6.1 OVERVIEW OF KEY INDUSTRY TRENDS 82
      • 6.1.1 EVOLUTION OF AI IN DRUG DISCOVERY 82
      • 6.1.2 COMPUTER-AIDED DRUG DESIGN AND AI 84
    • 6.2 SUPPLY CHAIN ANALYSIS 84
    • 6.3 PORTER’S FIVE FORCES ANALYSIS 85
      • 6.3.1 INTENSITY OF COMPETITIVE RIVALRY 85
      • 6.3.2 BARGAINING POWER OF BUYERS 85
      • 6.3.3 BARGAINING POWER OF SUPPLIERS 86
      • 6.3.4 THREAT OF SUBSTITUTES 86
      • 6.3.5 THREAT OF NEW ENTRANTS 86
    • 6.4 ECOSYSTEM/MARKET MAP 86
    • 6.5 TECHNOLOGY ANALYSIS 87
      • 6.5.1 DRY LAB SERVICES 87
      • 6.5.2 WET LAB SERVICES 90
        • 6.5.2.1 Chemistry services 90
        • 6.5.2.2 BIOLOGICAL SERVICES 91
          • 6.5.2.2.1 Single-cell analysis 92
    • 6.6 PRICING ANALYSIS 95
      • 6.6.1 AVERAGE SELLING PRICE TRENDS, BY REGION 95
      • 6.6.2 INDICATIVE PRICING ANALYSIS, BY PROCESS 96
    • 6.7 BUSINESS MODELS 96
    • 6.8 CASE STUDY ANALYSIS 99
      • 6.8.1 CASE STUDY 1: BRISTOL MYERS SQUIBB AND EXSCIENTIA 99
      • 6.8.2 CASE STUDY 2: APEIRON LLC AND EXSCIENTIA 100
    • 6.9 REGULATORY ANALYSIS 101
      • 6.9.1 AI IN DRUG DISCOVERY MARKET: REGULATORY LANDSCAPE, BY REGION 101
      • 6.9.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS 103
    • 6.10 PATENT ANALYSIS 104
    • 6.11 KEY CONFERENCES & EVENTS (Q1 2023-Q2 2024) 108
    • 6.12 TRENDS/DISRUPTIONS IMPACTING CUSTOMERS’ BUSINESSES 109
    • 6.13 KEY STAKEHOLDERS & BUYING CRITERIA 109
      • 6.13.1 KEY STAKEHOLDERS IN BUYING PROCESS 109
      • 6.13.2 BUYING CRITERIA FOR AI IN DRUG DISCOVERY MARKET 110
    • 6.14 AI-DERIVED CLINICAL ASSETS 110
    • 6.15 UNMET NEEDS 120
      • 6.15.1 UNMET NEEDS IN AI IN DRUG DISCOVERY 120
      • 6.15.2 SINGLE-CELL ANALYSIS LANDSCAPE: KEY CHALLENGES AND PAIN POINTS IN DRUG DISCOVERY 121
      • 6.15.3 KEY UNMET NEEDS AND PAIN POINTS FOR AI APPLICATIONS IN SINGLE-CELL ANALYSIS FOR DRUG DISCOVERY 122
  • 7 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING 123

    • 7.1 INTRODUCTION 124
    • 7.2 SERVICES 124
      • 7.2.1 SERVICES SEGMENT TO WITNESS HIGHEST GROWTH 124
    • 7.3 SOFTWARE 125
      • 7.3.1 BENEFITS OF SOFTWARE IN DRUG DISCOVERY AND STRONG DEMAND AMONG END USERS TO DRIVE GROWTH 125
  • 8 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY 127

    • 8.1 INTRODUCTION 128
    • 8.2 MACHINE LEARNING 128
      • 8.2.1 DEEP LEARNING 130
        • 8.2.1.1 Deep learning to see growing adoption in drug discovery 130
      • 8.2.2 SUPERVISED LEARNING 131
        • 8.2.2.1 Applications in drug repositioning to drive market 131
      • 8.2.3 REINFORCEMENT LEARNING 132
        • 8.2.3.1 Potential for machines and software to automatically determine behavior to support adoption 132
      • 8.2.4 UNSUPERVISED LEARNING 133
        • 8.2.4.1 Unpredictability to affect end-user adoption 133
      • 8.2.5 OTHER MACHINE LEARNING TECHNOLOGIES 134
    • 8.3 NATURAL LANGUAGE PROCESSING 135
      • 8.3.1 POTENTIAL APPLICATIONS IN DATA IDENTIFICATION TO SUPPORT GROWTH 135
    • 8.4 CONTEXT-AWARE PROCESSING & CONTEXT-AWARE COMPUTING 136
      • 8.4.1 RISING PROCESSING POWER, IMPROVED CONNECTIVITY TO BOOST USAGE 136
    • 8.5 OTHER TECHNOLOGIES 137
  • 9 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET

    • 9.1 INTRODUCTION 140
    • 9.2 ONCOLOGY 140
      • 9.2.1 HIGH PREVALENCE OF CANCER AND SHORTAGE OF EFFECTIVE CANCER DRUGS TO DRIVE SEGMENT GROWTH 140
    • 9.3 INFECTIOUS DISEASES 141
      • 9.3.1 RISING EPIDEMIC OUTBREAKS TO BOOST DRUG DISCOVERY ACTIVITY 141
    • 9.4 NEUROLOGY 143
      • 9.4.1 NEED TO BOOST DISCOVERY AND DEVELOPMENT TO DRIVE MARKET 143
    • 9.5 CARDIOVASCULAR DISEASES 144
      • 9.5.1 RISING DEMAND FOR CVD DRUGS TO DRIVE SEGMENT 144
    • 9.6 IMMUNOLOGY 145
      • 9.6.1 GROWING DRUG PIPELINE FOR IMMUNOLOGICAL DISORDERS TO FAVOR MARKET GROWTH 145
    • 9.7 METABOLIC DISEASES 146
      • 9.7.1 ROLE OF AI IN UNCOVERING SMALL-MOLECULE THERAPIES TO DRIVE ADOPTION 146
    • 9.8 OTHER THERAPEUTIC AREAS 148
  • 10 AI IN DRUG DISCOVERY MARKET, BY PROCESS 149

    • 10.1 INTRODUCTION 150
    • 10.2 TARGET IDENTIFICATION & SELECTION 151
      • 10.2.1 DEVELOPMENT OF NEW TECHNOLOGIES TO SUPPORT MARKET GROWTH 151
    • 10.3 TARGET VALIDATION 152
      • 10.3.1 RISING EMPHASIS ON TARGET VALIDATION TO AVOID LATE-STAGE FAILURE 152
    • 10.4 HIT IDENTIFICATION & PRIORITIZATION 154
      • 10.4.1 NEED FOR LARGE-SCALE DATA ANALYSIS TO DRIVE ADOPTION 154
    • 10.5 HIT-TO-LEAD IDENTIFICATION/LEAD GENERATION 155
      • 10.5.1 HIT-TO-LEAD IDENTIFICATION TO HOLD LARGEST MARKET SHARE 155
    • 10.6 LEAD OPTIMIZATION 156
      • 10.6.1 NEED FOR TRANSPARENT PRESENTATION AND ANALYSIS TO BOOST FOCUS ON LEAD OPTIMIZATION 156
    • 10.7 CANDIDATE SELECTION & VALIDATION 158
      • 10.7.1 POSSIBILITY OF DRUG FAILURE DURING DEVELOPMENT TO DRIVE ADOPTION OF CANDIDATE VALIDATION SERVICES 158
  • 11 AI IN DRUG DISCOVERY MARKET, BY USE CASE 160

    • 11.1 INTRODUCTION 161
    • 11.2 SMALL-MOLECULE DESIGN & OPTIMIZATION 162
      • 11.2.1 AVAILABILITY OF WELL-VALIDATED AI TOOLS TO BOOST MARKET GROWTH 162
    • 11.3 UNDERSTANDING DISEASE 164
      • 11.3.1 RISING DATA MINING TO LINK TARGETS TO DISEASES AND DRUG REPURPOSING TO DRIVE MARKET 164
    • 11.4 SAFETY & TOXICITY 165
      • 11.4.1 TOXICOLOGY AND OFF-TARGET EFFECT PREDICTION, PK/PD SIMULATION, AND QSP MODELING TO PROPEL MARKET GROWTH 165
    • 11.5 VACCINE DESIGN & OPTIMIZATION 167
      • 11.5.1 GROWING ADOPTION OF AI FOR EPITOPE SELECTION, PREDICTION, AND BINDING TO AUGMENT MARKET GROWTH 167
    • 11.6 ANTIBODY & OTHER BIOLOGIC DESIGN & OPTIMIZATION 169
      • 11.6.1 GROWING ADOPTION OF AI FOR ANTIBODY PROPERTY PREDICTION TO DRIVE MARKET 169
  • 12 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER 171

    • 12.1 INTRODUCTION 172
    • 12.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES 172
      • 12.2.1 RISING DEMAND FOR SOLUTIONS TO CUT TIME AND COSTS OF DRUG DEVELOPMENT TO DRIVE MARKET 172
    • 12.3 CONTRACT RESEARCH ORGANIZATIONS 175
      • 12.3.1 GROWING TREND OF OUTSOURCING TO PROVIDE SIGNIFICANT OPPORTUNITIES FOR CONTRACT RESEARCH ORGANIZATIONS 175
    • 12.4 RESEARCH CENTERS AND ACADEMIC & GOVERNMENT INSTITUTES 177
      • 12.4.1 SEGMENT TO REGISTER HIGHEST CAGR OVER FORECAST PERIOD 177
  • 13 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY REGION 179

    • 13.1 INTRODUCTION 180
    • 13.2 NORTH AMERICA 180
      • 13.2.1 NORTH AMERICA: RECESSION IMPACT 180
      • 13.2.2 US 185
        • 13.2.2.1 Strong economy and trend of early adoption of technologies to drive market 185
      • 13.2.3 CANADA 190
        • 13.2.3.1 Growing research on AI technologies and emergence of new AI-based start-ups to support market growth 190
      • 13.2.4 MEXICO 194
        • 13.2.4.1 Government initiatives to support market growth 194
    • 13.3 EUROPE 197
      • 13.3.1 EUROPE: RECESSION IMPACT 198
      • 13.3.2 UK 202
        • 13.3.2.1 UK to hold largest share in Europe 202
      • 13.3.3 GERMANY 207
        • 13.3.3.1 Government support and favorable training programs to propel market growth 207
      • 13.3.4 FRANCE 211
        • 13.3.4.1 Strong government support and favorable strategies & initiatives to drive market 211
      • 13.3.5 ITALY 214
        • 13.3.5.1 Strong pharmaceutical industry to support market growth 214
      • 13.3.6 REST OF EUROPE 218
    • 13.4 ASIA PACIFIC 222
      • 13.4.1 ASIA PACIFIC: RECESSION IMPACT 222
      • 13.4.2 JAPAN 226
        • 13.4.2.1 Japan to dominate APAC market 226
      • 13.4.3 CHINA 230
        • 13.4.3.1 Growing CMO market and cross-industry collaborations to drive market 230
      • 13.4.4 INDIA 234
        • 13.4.4.1 Steady adoption of AI technologies to support market growth 234
      • 13.4.5 REST OF ASIA PACIFIC 238
    • 13.5 SOUTH AMERICA 242
      • 13.5.1 SHORTAGE OF SKILLED LABOR AND GROWING REQUIREMENTS TO DRIVE AI ADOPTION 242
      • 13.5.2 SOUTH AMERICA: RECESSION IMPACT 243
    • 13.6 MIDDLE EAST & AFRICA 246
      • 13.6.1 LIMITED COMPANY PRESENCE AND LARGE SCOPE FOR GROWTH TO FAVOR AI MARKET 246
      • 13.6.2 MIDDLE EAST & AFRICA: RECESSION IMPACT 246
  • 14 COMPETITIVE LANDSCAPE 251

    • 14.1 KEY PLAYER STRATEGIES/RIGHT TO WIN 251
    • 14.2 REVENUE ANALYSIS 256
    • 14.3 MARKET SHARE ANALYSIS 257
    • 14.4 COMPANY EVALUATION MATRIX 260
      • 14.4.1 STARS 260
      • 14.4.2 EMERGING LEADERS 260
      • 14.4.3 PERVASIVE PLAYERS 260
      • 14.4.4 PARTICIPANTS 261
      • 14.4.5 COMPANY FOOTPRINT 262
    • 14.5 START-UP/SME EVALUATION MATRIX 266
      • 14.5.1 PROGRESSIVE COMPANIES 266
      • 14.5.2 RESPONSIVE COMPANIES 266
      • 14.5.3 DYNAMIC COMPANIES 266
      • 14.5.4 STARTING BLOCKS 266
      • 14.5.5 AI IN DRUG DISCOVERY MARKET: COMPETITIVE BENCHMARKING 268
    • 14.6 COMPETITIVE SCENARIOS AND TRENDS 271
      • 14.6.1 PRODUCT LAUNCHES & ENHANCEMENTS 271
      • 14.6.2 DEALS 273
      • 14.6.3 OTHER DEVELOPMENTS 274
  • 15 COMPANY PROFILES 276

    • 15.1 KEY PLAYERS 276
      • 15.1.1 NVIDIA CORPORATION 276
      • 15.1.2 EXSCIENTIA 284
      • 15.1.3 GOOGLE 294
      • 15.1.4 BENEVOLENTAI 299
      • 15.1.5 RECURSION 303
      • 15.1.6 INSILICO MEDICINE 307
      • 15.1.7 SCHRÖDINGER, INC 314
      • 15.1.8 MICROSOFT CORPORATION 319
      • 15.1.9 ATOMWISE INC 323
      • 15.1.10 ILLUMINA, INC 325
      • 15.1.11 NUMEDII, INC 330
      • 15.1.12 XTALPI INC 332
      • 15.1.13 IKTOS 335
      • 15.1.14 TEMPUS LABS 341
      • 15.1.15 DEEP GENOMICS, INC 345
      • 15.1.16 VERGE GENOMICS 347
      • 15.1.17 BENCHSCI 349
      • 15.1.18 INSITRO 351
      • 15.1.19 VALO HEALTH 353
      • 15.1.20 BPGBIO, INC 356
    • 15.2 OTHER EMERGING PLAYERS 358
      • 15.2.1 PREDICTIVE ONCOLOGY, INC 358
      • 15.2.2 LABCORP 359
      • 15.2.3 IQVIA INC 360
      • 15.2.4 TENCENT HOLDINGS LIMITED 361
      • 15.2.5 CELSIUS THERAPEUTICS 362
      • 15.2.6 CYTOREASON 363
      • 15.2.7 OWKIN, INC 364
      • 15.2.8 CLOUD PHARMACEUTICALS 364
      • 15.2.9 EVAXION BIOTECH 365
      • 15.2.10 STANDIGM 365
      • 15.2.11 BIOAGE LABS 366
      • 15.2.12 ENVISAGENICS 366
      • 15.2.13 ARIA PHARMACEUTICALS, INC 367
  • 16 APPENDIX 368

    • 16.1 DISCUSSION GUIDE 368
    • 16.2 KNOWLEDGESTORE: MARKETSANDMARKETS’ SUBSCRIPTION PORTAL 375
    • 16.3 CUSTOMIZATION OPTIONS 377
    • 16.4 RELATED REPORTS 378
    • 16.5 AUTHOR DETAILS 379
  • 2023 VS. 2028 (USD MILLION) 65

TABLE 1 EXCHANGE RATES UTILIZED FOR CONVERSION TO USD TABLE 2 FACTOR ANALYSIS TABLE 3 RISK ASSESSMENT: AI IN DRUG DISCOVERY MARKET TABLE 4 GLOBAL INFLATION RATE PROJECTIONS, 2021-2027 (% GROWTH) TABLE 5 US HEALTH EXPENDITURE, 2019-2022 (USD MILLION) TABLE 6 US HEALTH EXPENDITURE, 2023-2027 (USD MILLION) TABLE 7 AI IN DRUG DISCOVERY MARKET: IMPACT ANALYSIS TABLE 8 INDICATIVE LIST OF COLLABORATIONS AND PARTNERSHIPS (2021-2023) TABLE 9 INDICATIVE LIST OF DRUGS LOSING PATENTS IN 2023 TABLE 10 AI IN DRUG DISCOVERY MARKET: PORTER’S FIVE FORCES ANALYSIS TABLE 11 AI IN DRUG DISCOVERY MARKET: INDICATIVE PRICING, BY PROCESS TABLE 12 LIST OF REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS TABLE 13 LIST OF PATENTS/PATENT APPLICATIONS IN AI IN DRUG DISCOVERY MARKET, 2021-2023 TABLE 14 KEY AI-DERIVED CLINICAL ASSETS, BY COMPANY TABLE 15 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 16 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR SERVICES, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 17 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR SOFTWARE, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 18 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 19 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 20 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 21 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR DEEP LEARNING, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 22 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR SUPERVISED LEARNING, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 23 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR REINFORCEMENT LEARNING, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 24 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR UNSUPERVISED LEARNING, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 25 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR OTHER MACHINE LEARNING TECHNOLOGIES, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 26 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR NATURAL LANGUAGE PROCESSING, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 27 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR CONTEXT-AWARE PROCESSING & CONTEXT-AWARE COMPUTING, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 28 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR OTHER TECHNOLOGIES, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 29 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 30 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR ONCOLOGY, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 31 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR INFECTIOUS DISEASES, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 32 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR NEUROLOGY, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 33 INDICATIVE LIST OF DEVELOPMENTS IN CARDIOVASCULAR DRUG DEVELOPMENT TABLE 34 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR CARDIOVASCULAR DISEASES, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 35 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR IMMUNOLOGY, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 36 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR METABOLIC DISEASES, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 37 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR OTHER THERAPEUTIC AREAS, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 38 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 39 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR TARGET IDENTIFICATION & SELECTION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 40 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR TARGET VALIDATION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 41 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR HIT IDENTIFICATION & PRIORITIZATION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 42 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR HIT-TO-LEAD IDENTIFICATION/LEAD GENERATION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 43 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR LEAD OPTIMIZATION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 44 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR CANDIDATE SELECTION & VALIDATION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 45 AI IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 46 AI IN DRUG DISCOVERY MARKET FOR SMALL-MOLECULE DESIGN & OPTIMIZATION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 47 AI IN DRUG DISCOVERY MARKET FOR UNDERSTANDING DISEASE, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 48 AI IN DRUG DISCOVERY MARKET FOR SAFETY & TOXICITY, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 49 AI IN DRUG DISCOVERY MARKET FOR VACCINE DESIGN & OPTIMIZATION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 50 AI IN DRUG DISCOVERY MARKET FOR ANTIBODY & OTHER BIOLOGIC DESIGN & OPTIMIZATION, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 51 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 52 INDICATIVE LIST OF DEVELOPMENTS RELATED TO AI IN PHARMACEUTICAL & BIOTECHNOLOGY INDUSTRY TABLE 53 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 54 INDICATIVE LIST OF COLLABORATIONS WITH CROS TABLE 55 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR CONTRACT RESEARCH ORGANIZATIONS, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 56 INDICATIVE LIST OF RESEARCH COLLABORATIONS TABLE 57 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR RESEARCH CENTERS AND ACADEMIC & GOVERNMENT INSTITUTES, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 58 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY REGION, 2021-2028 (USD MILLION) TABLE 59 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 60 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 61 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 62 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 63 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 64 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 65 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 66 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 67 US: INDICATIVE LIST OF STRATEGIC DEVELOPMENTS TABLE 68 US: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 69 US: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 70 US: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 71 US: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA 2021-2028 (USD MILLION) TABLE 72 US: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS 2021-2028 (USD MILLION) TABLE 73 US: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 74 US: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 75 CANADA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 76 CANADA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 77 CANADA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 78 CANADA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 79 CANADA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 80 CANADA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 81 CANADA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 82 MEXICO: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 83 MEXICO: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 84 MEXICO: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 85 MEXICO: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 86 MEXICO: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 87 MEXICO: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 88 MEXICO: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 89 EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 90 EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 91 EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 92 EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 93 EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 94 EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 95 EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 96 EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 97 UK: INDICATIVE LIST OF STRATEGIC DEVELOPMENTS TABLE 98 UK: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 99 UK: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 100 UK: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 101 UK: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 102 UK: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 103 UK: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 104 UK: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 105 GERMANY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 106 GERMANY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 107 GERMANY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 108 GERMANY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 109 GERMANY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 110 GERMANY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 111 GERMANY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 112 FRANCE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 113 FRANCE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 114 FRANCE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 115 FRANCE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 116 FRANCE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 117 FRANCE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 118 FRANCE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 119 ITALY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 120 ITALY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 121 ITALY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 122 ITALY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 123 ITALY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 124 ITALY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 125 ITALY: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 126 REST OF EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 127 REST OF EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 128 REST OF EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 129 REST OF EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 130 REST OF EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 131 REST OF EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 132 REST OF EUROPE: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 133 ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY COUNTRY, 2021-2028 (USD MILLION) TABLE 134 ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 135 ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 136 ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 137 ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 138 ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 139 ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 140 ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 141 JAPAN: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 142 JAPAN: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 143 JAPAN: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 144 JAPAN: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 145 JAPAN: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 146 JAPAN: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 147 JAPAN: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 148 CHINA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 149 CHINA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 150 CHINA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 151 CHINA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 152 CHINA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 153 CHINA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 154 CHINA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 155 INDIA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 156 INDIA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 157 INDIA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 158 INDIA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 159 INDIA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 160 INDIA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 161 INDIA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 162 REST OF ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 163 REST OF ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 164 REST OF ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 165 REST OF ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 166 REST OF ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 167 REST OF ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 168 REST OF ASIA PACIFIC: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 169 SOUTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 170 SOUTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 171 SOUTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 172 SOUTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 173 SOUTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 174 SOUTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 175 SOUTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 176 MIDDLE EAST & AFRICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2021-2028 (USD MILLION) TABLE 177 MIDDLE EAST & AFRICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2021-2028 (USD MILLION) TABLE 178 MIDDLE EAST & AFRICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET FOR MACHINE LEARNING, BY TYPE, 2021-2028 (USD MILLION) TABLE 179 MIDDLE EAST & AFRICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2021-2028 (USD MILLION) TABLE 180 MIDDLE EAST & AFRICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS, 2021-2028 (USD MILLION) TABLE 181 MIDDLE EAST & AFRICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE, 2021-2028 (USD MILLION) TABLE 182 MIDDLE EAST & AFRICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2021-2028 (USD MILLION) TABLE 183 OVERVIEW OF STRATEGIES ADOPTED BY KEY AI IN DRUG DISCOVERY PLAYERS, FEBRUARY 2021- MAY 2022 TABLE 184 AI IN DRUG DISCOVERY MARKET: DEGREE OF COMPETITION TABLE 185 USE CASE FOOTPRINT (24 COMPANIES) TABLE 186 PROCESS FOOTPRINT (24 COMPANIES) TABLE 187 REGION FOOTPRINT (24 COMPANIES) TABLE 188 COMPANY FOOTPRINT (24 COMPANIES) TABLE 189 AI IN DRUG DISCOVERY MARKET: DETAILED LIST OF KEY SMES/START-UPS TABLE 190 USE CASE FOOTPRINT (START-UPS/SMES) TABLE 191 PROCESS FOOTPRINT (START-UPS/SMES) TABLE 192 REGION FOOTPRINT (START-UPS/SMES) TABLE 193 COMPANY FOOTPRINT (START-UPS/SMES) TABLE 194 AI IN DRUG DISCOVERY MARKET: PRODUCT LAUNCHES & ENHANCEMENTS, 2021-2023 TABLE 195 AI IN DRUG DISCOVERY MARKET: DEALS, 2021-2023 TABLE 196 AI IN DRUG DISCOVERY MARKET: OTHER DEVELOPMENTS, 2021-2023 TABLE 197 NVIDIA CORPORATION: COMPANY OVERVIEW TABLE 198 NVIDIA CORPORATION: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 199 NVIDIA CORPORATION: PRODUCT/SERVICE LAUNCHES TABLE 200 NVIDIA CORPORATION: DEALS TABLE 201 EXSCIENTIA: COMPANY OVERVIEW TABLE 202 EXSCIENTIA: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 203 EXSCIENTIA: PRODUCT/SERVICE LAUNCHES TABLE 204 EXSCIENTIA: DEALS TABLE 205 EXSCIENTIA: OTHER DEVELOPMENTS TABLE 206 GOOGLE: COMPANY OVERVIEW TABLE 207 GOOGLE: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 208 GOOGLE: PRODUCT/SERVICE LAUNCHES TABLE 209 GOOGLE: DEALS TABLE 210 GOOGLE: OTHER DEVELOPMENTS TABLE 211 BENEVOLENTAI: COMPANY OVERVIEW TABLE 212 BENEVOLENTAI: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 213 BENEVOLENTAI: DEALS TABLE 214 RECURSION: COMPANY OVERVIEW TABLE 215 RECURSION: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 216 RECURSION: PRODUCT/SERVICE LAUNCHES TABLE 217 RECURSION: DEALS TABLE 218 RECURSION: OTHER DEVELOPMENTS TABLE 219 INSILICO MEDICINE: COMPANY OVERVIEW TABLE 220 INSILICO MEDICINE: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 221 INSILICO MEDICINE: PRODUCT/SERVICE LAUNCHES TABLE 222 INSILICO MEDICINE: DEALS TABLE 223 INSILICO MEDICINE: OTHER DEVELOPMENTS TABLE 224 SCHRÖDINGER, INC.: COMPANY OVERVIEW TABLE 225 SCHRÖDINGER, INC.: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 226 SCHRÖDINGER, INC.: DEALS TABLE 227 SCHRÖDINGER, INC.: OTHER DEVELOPMENTS TABLE 228 MICROSOFT CORPORATION: COMPANY OVERVIEW TABLE 229 MICROSOFT CORPORATION: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 230 MICROSOFT CORPORATION: SERVICE LAUNCHES TABLE 231 MICROSOFT CORPORATION: DEALS TABLE 232 ATOMWISE INC.: COMPANY OVERVIEW TABLE 233 ATOMWISE INC.: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 234 ATOMWISE INC.: DEALS TABLE 235 ILLUMINA, INC.: COMPANY OVERVIEW TABLE 236 ILLUMINA, INC.: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 237 ILLUMINA, INC.: PRODUCT/SERVICE LAUNCHES TABLE 238 ILLUMINA, INC.: DEALS TABLE 239 NUMEDII, INC.: COMPANY OVERVIEW TABLE 240 NUMEDII, INC.: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 241 XTALPI INC.: COMPANY OVERVIEW TABLE 242 XTALPI INC.: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 243 XTALPI INC.: DEALS TABLE 244 IKTOS: COMPANY OVERVIEW TABLE 245 IKTOS: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 246 IKTOS: DEALS TABLE 247 IKTOS: OTHER DEVELOPMENTS TABLE 248 TEMPUS LABS: COMPANY OVERVIEW TABLE 249 TEMPUS LABS: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 250 TEMPUS LABS: PRODUCT/SERVICE LAUNCHES TABLE 251 TEMPUS LABS: DEALS TABLE 252 TEMPUS LABS: OTHER DEVELOPMENTS TABLE 253 DEEP GENOMICS, INC.: COMPANY OVERVIEW TABLE 254 DEEP GENOMICS, INC.: PRODUCTS/SERVICES OFFERED TABLE 255 DEEP GENOMICS, INC.: DEALS TABLE 256 DEEP GENOMICS, INC.: OTHER DEVELOPMENTS TABLE 257 VERGE GENOMICS: COMPANY OVERVIEW TABLE 258 VERGE GENOMICS: PRODUCTS/SERVICES OFFERED TABLE 259 VERGE GENOMICS: DEALS TABLE 260 BENCHSCI: COMPANY OVERVIEW TABLE 261 BENCHSCI: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 262 BENCHSCI: PRODUCT/SERVICE LAUNCHES TABLE 263 BENCHSCI: OTHER DEVELOPMENTS TABLE 264 INSITRO: COMPANY OVERVIEW TABLE 265 INSITRO: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 266 INSITRO: OTHER DEVELOPMENTS TABLE 267 VALO HEALTH: COMPANY OVERVIEW TABLE 268 VALO HEALTH: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 269 VALO HEALTH: DEALS TABLE 270 VALO HEALTH: OTHER DEVELOPMENTS TABLE 271 BPGBIO, INC.: COMPANY OVERVIEW TABLE 272 BPGBIO, INC.: PRODUCTS/SOLUTIONS/SERVICES OFFERED TABLE 273 BPGBIO, INC.: DEALS

FIGURE 1 AI IN DRUG DISCOVERY MARKET: MARKET SEGMENTATION FIGURE 2 RESEARCH DESIGN FIGURE 3 BREAKDOWN OF PRIMARY INTERVIEWS: BY DEMAND SIDE FIGURE 4 SUPPLY-SIDE MARKET ESTIMATION: REVENUE SHARE ANALYSIS FIGURE 5 BOTTOM-UP APPROACH: END-USER SPENDING ON AI IN DRUG DISCOVERY FIGURE 6 CAGR PROJECTIONS FROM ANALYSIS OF DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES (2022-2027) FIGURE 7 CAGR PROJECTIONS: SUPPLY-SIDE ANALYSIS FIGURE 8 TOP-DOWN APPROACH FIGURE 9 DATA TRIANGULATION METHODOLOGY FIGURE 10 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY OFFERING, 2023 VS. 2028 (USD MILLION) FIGURE 11 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2023 VS. 2028 (USD MILLION) FIGURE 12 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY THERAPEUTIC AREA, 2023 VS. 2028 (USD MILLION) FIGURE 13 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY PROCESS FIGURE 14 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY USE CASE FIGURE 15 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET, BY END USER, 2023 VS. 2028 (USD MILLION) FIGURE 16 ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET: GEOGRAPHICAL SNAPSHOT FIGURE 17 GROWING NUMBER OF CROSS-INDUSTRY COLLABORATIONS & PARTNERSHIPS TO DRIVE MARKET FIGURE 18 NORTH AMERICA TO DOMINATE AI IN DRUG DISCOVERY MARKET DURING FORECAST PERIOD FIGURE 19 US TO REGISTER HIGHEST REVENUE GROWTH FROM 2023 TO 2028 FIGURE 20 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES AND US HELD LARGEST SHARE IN NORTH AMERICA, 2022 FIGURE 21 SERVICES TO HOLD MAJORITY MARKET SHARE IN 2028 FIGURE 22 MACHINE LEARNING TO RETAIN MARKET LEADERSHIP TILL 2028 FIGURE 23 ONCOLOGY TO DOMINATE MARKET IN 2028 FIGURE 24 HIT-TO LEAD IDENTIFICATION/LEAD GENERATION TO DOMINATE MARKET IN 2028 FIGURE 25 SMALL MOLECULE DESIGN & OPTIMIZATION TO REGISTER HIGHEST GROWTH OVER FORECAST PERIOD FIGURE 26 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES TO ACCOUNT FOR LARGEST MARKET SHARE IN 2028 FIGURE 27 AI IN DRUG DISCOVERY: MARKET DYNAMICS FIGURE 28 EVOLUTION OF AI IN DRUG DISCOVERY MARKET FIGURE 29 STRUCTURE-BASED DRUG DESIGNING: AI IN DRUG DISCOVERY MARKET FIGURE 30 AI IN DRUG DISCOVERY MARKET: SUPPLY CHAIN ANALYSIS (2022) FIGURE 31 AI IN DRUG DISCOVERY MARKET ECOSYSTEM FIGURE 32 AI IN DRUG DISCOVERY MARKET: CLASSIFICATION FIGURE 33 AI IN LIFE SCIENCES: BUSINESS MODELS FIGURE 34 BENEFITS OF HYBRID BUSINESS MODELS FIGURE 35 SPECIALIZATION OF AI COMPANIES OVER TIME FIGURE 36 TOP PATENT OWNERS AND APPLICANTS FOR AI IN DRUG DISCOVERY SOLUTIONS (JANUARY 2011-OCTOBER 2023) FIGURE 37 AI IN DRUG DISCOVERY MARKET: PATENT ANALYSIS (JANUARY 2011-OCTOBER 2023) FIGURE 38 TOP APPLICANT COUNTRIES/REGIONS FOR AI IN DRUG DISCOVERY PATENTS (JANUARY 2012-JULY 2023) FIGURE 39 REVENUE SHIFT IN AI IN DRUG DISCOVERY MARKET FIGURE 40 INFLUENCE OF STAKEHOLDERS ON BUYING PROCESS OF AI IN DRUG DISCOVERY MARKET FIGURE 41 KEY BUYING CRITERIA FOR END USERS FIGURE 42 HIT-TO-LEAD IDENTIFICATION/LEAD GENERATION SEGMENT HELD LARGEST MARKET SHARE IN 2022 FIGURE 43 SMALL-MOLECULE DESIGN & OPTIMIZATION SEGMENT ACCOUNTED FOR LARGEST MARKET SHARE IN 2022 FIGURE 44 NORTH AMERICA: ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY MARKET SNAPSHOT FIGURE 45 DISTRIBUTION OF R&D COMPANIES, BY COUNTRY/REGION (2021 VS. 2022) FIGURE 46 REVENUE ANALYSIS OF TOP MARKET PLAYERS, 2022 FIGURE 47 AI IN DRUG DISCOVERY MARKET: MARKET SHARE ANALYSIS, 2022 FIGURE 48 AI IN DRUG DISCOVERY MARKET: COMPANY EVALUATION MATRIX, 2022 FIGURE 49 AI IN DRUG DISCOVERY MARKET: START-UP/SME EVALUATION MATRIX, 2022 FIGURE 50 NVIDIA CORPORATION: COMPANY SNAPSHOT, 2022 FIGURE 51 EXSCIENTIA: COMPANY SNAPSHOT (2022) FIGURE 52 GOOGLE: COMPANY SNAPSHOT (2022) FIGURE 53 BENEVOLENTAI: COMPANY SNAPSHOT (2022) FIGURE 54 RECURSION: COMPANY SNAPSHOT (2022) FIGURE 55 SCHRÖDINGER, INC.: COMPANY SNAPSHOT (2022) FIGURE 56 MICROSOFT CORPORATION: COMPANY SNAPSHOT (2023) FIGURE 57 ILLUMINA, INC.: COMPANY SNAPSHOT (2022)

価格:USD 4,950
732,501もしくは部分購入
適用レート
1 USD = 147.98
※稀に出版元により価格が改定されている場合がございます。
contact
© 2023 ShareFair Inc.